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how to summarize the information in the sample?

o if the sample size n is large, then the sample x1, ..., x, is a long list of numbers that may be hard
to interpret

e solution: compute a few statistics, e.g., sample mean, variance and quantiles, to determine the
key features of the sample values

e any statistic T(X) defines a form of data reduction

o like partitioning the sample space into sets A; = {x : T(x) = t}, and so we should be very careful
in defining these partitions

e general principle: contrive data reduction methods that do not discard important information
about the unknown parameter vector 6 as well as that do discard irrelevant information
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example

experimenter A and B know that some data X has been generated as a normal random variable
with mean 1 and variance o2.

only experimenter A has access to the data, but tells B the sample average X, and sample
variance S3. le., tells T(x).

does experimenter B need any additional information to fully characterize the distribution?
experimenter B could, for example, generate another stretch of data y such that T(x) = T(y)

we shall see that Xy and S} as sufficient statistics for the normal distribution
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principle

o definition:
(i) T(X) is sufficient for 6 if any inference about 6 depends on the sample X only through T(X)

(ii) more formally, a statistic T(X) is a sufficient statistic for @ if the conditional distribution of the
sample X given the value of T(X) does not depend on 6.

o the information of 6 in the observation of X is concentrated in that of T. Usually, T is of lower
dimension than X. Hence, the observation of T is less costly, though it includes the same amount
of information on 6. Usefulness of a sufficient statistics lies in such data reduction.

e equivalently, if x and y are two samples such that T(x) = T(y), then the inference about
should be the same regardless of whether we observe X = x or X =y
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characterization via pdf/pmf

e discrete random variables: we can always write

Po(X = x, T(X) = T(x)) Py(X = x| T(X) = T(x)) - Po(T(X) = T(x))

o if T(X) is a sufficient statistic, then

Po(X = x| T(X) = T(x)) = P(X=x|T(X)=T(x))
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characterization via pdf/pmf

e so to verify whether T(X) is a sufficient statistic, we must check if

Po(X = x, T(X) = T(x))

Po(X =x|T(X)=T(x)) = Py (T(X) = T(x))

does not depend on 0, for all fixed x and t. Finally, we use the fact that {X = x} is a subset of

{T(X) = T(x)}

Py (X = x
Py(X = x| T(X) = T(x)) Pg(rg(go = T)(x))
_ P
a(T(x)I6)

where p is the pdf of X and q is the pdf of T(x) given 6.

e continuous random variables: analogous with p(x|0) and g(t|0) denoting the pdfs of X and of the
statistic T(X), respectively
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binomial sufficient statistic

e theorem: if Xi,..., X, are iid Bernoulli random variables with parameter 6, then
T(X)= X1+ ...+ X, is a sufficient statistic for ¢

e proof: given that T(X) ~ Bin(n, ), the ratio of pdfs is, defining t = >_" | x;
pxl0)  _ T, 07(Q-0)"

g(TC)e) (Dot~ )"*f
OX=1% (1 — )= (1)
(Dor(1— o)
fL—o) 1
(Her—oy-—r

~ 3
~—

which does not depend on 6 ]
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normal sufficient statistic

o theorem: if X1,..., X, are iid N(u, 1) random variables, then T(X) = X, is a sufficient statistic
for u

e proof: given that T(X) ~ N(u,1/n), the ratio of pdfs is

F(xl12) [T, (2m) 2 exp (—(x — 1)?/2)

q(%al) — (2m/n)"V2exp (=5 (%0 — 1)?)

(27)~"/2 exp (=L [0, (6 = Ra)? + (%0 — 1))
(2m/n)=1/2 exp (=5 (%0 — 11)?)

n~Y2(00) (- 1/2 o (; S (- )_(n)z) 7
i=1

which does not depend on p
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how to find a sufficient statistic
e it may not be the best approach to use the definition directly, since one has to guess the sufficient
statistic, find the pmfs, and calculate the ratio.

o fortunately, there is the following theorem

o factorization theorem (CB 6.2.6): let fx(x|6) denote the joint pmf/pdf of a sample X, then T(X)
is a sufficient statistic for 6 if and only if there exist functions g(t|0) and h(x) such that, for all
sample points x and all parameter points 6,

f(xl0) = g(T(x)I0)h(x)

e proof (=, discrete case): note that, because T(X) is a sufficient statistic,
h(X) =P(X = x| T(X) = T(x)) does not depend on 0. Letting then g(t|0) = Ps(T(X) = t)

yields
f(x|0) = Po(X= x)
= Po(X =x, = T(x))
= Po(T(X) = T(X JP(X = x| T(X) = T(x))
= g(T()I6)h(x
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how to find a sufficient statistic

e proof (<=, discrete case): assume that factorization
f(xl0) = g(T()I0)h(x)

exists and examine the ratio %, where q(t|6) is the pmf of T(X).

fx(x10) _ &(T()I0)h(x) _ g(T(x)[0)h(x)
qa(T(x)10) a(T(x)19) 2 aryy E(T()IO)A(y)
where Ary ={y: T(y) = T(x)}. Then
fx(x16) g(T(x)[0)h(x) _ h(x)

a(TX)0) — eTXDE A, ) Ta, )

The ratio does not depend on 6, so T(X) is a sufficient statistic.
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how to find a sufficient statistic

e to use the factorization theorem, we factor the joint pdf of the sample into two parts:
— h(x): one does not depend on 6

— g(T(x)|0): depends on the sample x only through T(x)

o let's see some examples...
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discrete uniform sufficient statistic

o theorem: if Xi,..., X, are iid uniform on 1,...,6 then T(X) = X, is a sufficient statistic for ¢

e proof: the joint pmf of X is

ifx,=1,...,0fori=1,...,n
otherwise

ch‘,_,

COIS
write the restriction

{xi=1,...,0fori=1,....,n} = I(x; € N)-I(xn < 0)

SO
1 n
fF(x10) = @I(m)se)-ﬂlz(xfeN)
———— =
g(x(n)10) )
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normal distribution, both parameters unknown
o theorem: let Xi, ..., X, be iid N(u,o?). Then

Tl(X) = X

.1 ¢ 2
L0 = 8= ST ()

are sufficient statistics.

e proof: the joint pdf of the sample X is

n

[T(2ro®) 2 exp {~(x — w)?/(20%)}

i=1

F(x|p, o)

n

= (2r0®) " exp {— Z(X; - u)z/(202)}

i=1

= (2r06®) " exp {— <Z(X{ - %)?+n(x - u)2> /(202)}

= (2r0®) P exp{— ((n—1)t2 + n(tr — p)*) /(20°)}
then select g(T(x)|0) as this expression and h(x) = 1.
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exponential family

o theorem: if Xi,..., X, are iid observations from an exponential family then
T(X) = (Z s1(X)), st(x )
j=1

is sufficient for 6

e proof: the joint pdf is

ﬁ{ xi)c(0) exp (ZWJ 0)ti(xi )}

c(0) exp (sz(e)n(m) L6

i=1 i=1 j=1 i=1
k n n
= coren (S w3509 1)
j=1 i=1 i=1
=g(T(x)|0) =h(x)
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sufficient statistics

e not all sufficient statistic achieve a substantial data reduction

o example: if X1,...,X, are i.i.d. from a pdf fx, the order statistic
TX) = (Xay,---Xw)

is a sufficient statistic for fx

e example: the complete sample is a sufficient statistic, since
fx(x|0) = F(T(x)|0)h(x)
with h(x) =1

e sometimes it is impossible to achieve a substantial data reduction: nonparametric statistics

e it turns out that having a data reduction is a particular property of only a few distributions:
outside the exponential family, it is rare to have a sufficient statistic smaller than the sample size
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minimal sufficient statistics

e as we have seen, there are often numerous sufficient statistics. which one is better?
e a criterion: achieving more data reduction is better

e a minimial sufficient statistic is a statistic that has achieved the maximal amount of data
reduction while still retaining all the information about the parameter 6
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minimal sufficient statistics

e theorem: any bijective function of a sufficient statistic is also a sufficient statistic.

e proof: to see this, let T(X) be a sufficient statistic and T*(X) = r(T(X)). Then
f(X10) = g(T(X)IO)h(x) = g(r ' (T"(X))I6)h(x)
and defining g (t|0) = g(r(1)|0),
f(x16) = & (T (x)I0)h(x)

so T*(x) is a sufficient statistic
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minimal sufficient statistics

o definition: a sufficient statistic T(X) is called a minimal sufficient statistic if, for any other
sufficient statistic T'(X), T(X) is a function of T'(X).

o we defined a sufficient statistic as a partition of the sample space X
— let T ={t:t= T(x),x € X}, the image of X under T(x)
— T(x) induces a partition of X, {A¢: t € T}, Ar = {x: T(x) =t}

e ... and back to the minimal sufficient statistics:
— if T(x) is a function of T’(x), then T'(x) = T'(y) = T(x) = T(y)
— let By = {x|T'(x) = t'}. So By C A; for some t
— this must be true for any sufficient statistic T’(x)

— in other words, the minimal sufficient statistic induces the coarsest partition {A¢|t € T} of X among
all sufficient statistics
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minimal sufficient statistics

e again, applying this definition may not be too practical. Fortunately, we have the following
theorem

e theorem (CB 6.2.13): let f(x|#) be the pmf or pdf of a sample X. Suppose that there exists a
function T(x) such that, for every two sample points x and y, the ratio ?E;}g; is a constant
function of 0 if and only if T(x) = T(y). Then T(X) is a minimal sufficient statistic for 6.

o before proving the theorem, let's see an example
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minimal sufficient statistics

o example: let Xi,..., X, beiid. N(u,o?), both i and o unknown. The ratio of densities are
f(xlu,0?) _ (2m0®) "2 exp {=[n(x = p)* + (n - 1)s?]/(20°)}
f(ylp,o?) (2mo2) "2 exp{—[n(y — p1)* + (n — 1)s7]/(202)}
B {fn(xz )+ 2mu(R = §) — (= 1)(s2 — sf)}
- P 202

which will be a constant function of 1 and o2 if, and only if, X = ¥ and s? = s2. Thus, (X, S?) is
a minimal sufficient statistic for (u, o?).
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minimal sufficient statistics

e proof (T(X) is a sufficient statistic): let 7 = {t : t = T(x) for some x € X'} be the image of X
under T(X), along with its partitions A; = {x : T(x) = t}. For each A;, fix one element x; € A..
So for any x € X, there is a x7(x) € A:. That is, both x and x7(,) € A:. Therefore

T(x) = T(xr(x) and fx19) _is constant in 6.

F(xr010)
Now take g(t|6) = f(x¢|0) defined on T, and h(x) = f(f(x‘el)g) defined on X. And write
XT(x)
f(x10) = &(T(x)I0)h(x)
By the factorization theorem, T(X) is a sufficient statistic. [ ]
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minimal sufficient statistics

e proof (T(X) is a minimal sufficient statistic): let T'(X) be any other sufficient statistic. By the
factorization theorem, there exists functions g’ and A’ such that f(x|0) = g'(T'(x)|0)H'(x). Let x
and y be any two sample points with T'(x) = T’(y). Then

fx0) _ (TR _ H(x)
f(y16) g'(T')IO)H (y) (y)
since the ratio does not depend on 6, by assumption T(x) = T(y). Thus, T(x) is a function of
T'(x) and T(x) is minimal. [ ]
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minimal sufficient statistics

o example: let {Xi,...,X,} be a random sample. Find the minimal sufficient statistics for 6 with
distribution.
f(x0) = e f<x<oo, —00<b<o0
e answer:
f(X|0) Hln 1 ( I(@ <X < OO))
flylo) — TILi(em%=9-Z(0 < yi < 0))
B ee” XN [N, Z(0 < x; < o0)
C emMe L[] Z(0 < yi < 00)

LiNT(0 < minx; < 00)
e ZiYiI(é? < miny; < 00)

which is independent of 6 if, and only if, T(X) = min{Xy, ..., Xs}.
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likelihood function

o definition: let fx(x|6) denote the joint pdf/pmf of X, then the likelihood function of @ given
X =xis

L0x) = fx(x]9)

o discrete case: if we compare the likelihood functions at 61 and 6> and find that
Pgl(X = X) = 6(01|X) > 6(02|x) = PQZ(X = X),
then the sample we observe is more likely to stem from 6 = 6; than from 6 = 6-.

e in other words, 6; is more plausible that 6> given X = x

e continuous case: remains a basis for comparison

Po, (|1X — x| <€) o (01]x) for small € > 0

Po, (|1 X — x| <€) £(62]x)
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likelihood function

e example: let X have a binomial distribution. The p.d.f. is a function of x, given p,

fe(xlp=03) = <1:’>(o.3)X(o.7)1°X

and the likelihood is a function of p given x

fplx=3) = (13°>p3(1—p>1°3
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likelihood function

pdf

0.05 0.10 0.15 0.20 0.25

0.00

Binomial pdf
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likelihood function

Binomial likelihood

likelihood

0.05
1

0.0 0.2 0.4 0.6 0.8 1.0
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principle

o likelihood principle: if x and y are two sample points such that ¢(0|x) is proportional to £(6|y),
that is to say, there exists a constant c(x,y) such that £(0|x) = c(x,y) £(0]y) for all 8, then they
entail the same information about 6

e that is, even if two sample points x and y have only proportional likelihoods, then they contain
equivalent information about 6 (this is true as long as c(x, y) does not depend on )

o we are careful enough to say that 6; is more plausible that 6, rather than more probable, not only
because £(6|x) is typically not a pdf, but also because 6 is usually fixed
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Reference:

o Casella and Berger, Ch. 6

Exercises:

e 6.1-6.6, 6.8, 6.9, 6.16, 6.17.
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