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how to summarize the information in the sample?

• if the sample size n is large, then the sample x1, . . . , xn is a long list of numbers that may be hard
to interpret

• solution: compute a few statistics, e.g., sample mean, variance and quantiles, to determine the
key features of the sample values

• any statistic T (X ) defines a form of data reduction

• like partitioning the sample space into sets At = {x : T (x) = t}, and so we should be very careful
in defining these partitions

• general principle: contrive data reduction methods that do not discard important information
about the unknown parameter vector θ as well as that do discard irrelevant information
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example

• experimenter A and B know that some data X has been generated as a normal random variable
with mean µ and variance σ2.

• only experimenter A has access to the data, but tells B the sample average X̄n and sample
variance S2

N . I.e., tells T (x).

• does experimenter B need any additional information to fully characterize the distribution?

• experimenter B could, for example, generate another stretch of data y such that T (x) = T (y)

• we shall see that X̄N and S2
N as sufficient statistics for the normal distribution
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principle

• definition:

(i) T (X ) is sufficient for θ if any inference about θ depends on the sample X only through T (X )

(ii) more formally, a statistic T (X ) is a sufficient statistic for θ if the conditional distribution of the
sample X given the value of T (X ) does not depend on θ.

• the information of θ in the observation of X is concentrated in that of T . Usually, T is of lower
dimension than X . Hence, the observation of T is less costly, though it includes the same amount
of information on θ. Usefulness of a sufficient statistics lies in such data reduction.

• equivalently, if x and y are two samples such that T (x) = T (y), then the inference about θ
should be the same regardless of whether we observe X = x or X = y
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characterization via pdf/pmf

• discrete random variables: we can always write

Pθ(X = x ,T (X ) = T (x)) = Pθ

(
X = x |T (X ) = T (x)

)
· Pθ

(
T (X ) = T (x)

)

• if T (X ) is a sufficient statistic, then

Pθ

(
X = x |T (X ) = T (x)

)
= P

(
X = x |T (X ) = T (x)

)
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characterization via pdf/pmf

• so to verify whether T (X ) is a sufficient statistic, we must check if

Pθ

(
X = x |T (X ) = T (x)

)
=

Pθ(X = x ,T (X ) = T (x))

Pθ

(
T (X ) = T (x)

)
does not depend on θ, for all fixed x and t. Finally, we use the fact that {X = x} is a subset of
{T (X ) = T (x)}

Pθ

(
X = x |T (X ) = T (x)

)
=

Pθ

(
X = x

)
Pθ

(
T (X ) = T (x)

)
=

p(x |θ)
q
(
T (x)|θ

)
where p is the pdf of X and q is the pdf of T (x) given θ.

• continuous random variables: analogous with p(x |θ) and q(t|θ) denoting the pdfs of X and of the
statistic T (X ), respectively
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binomial sufficient statistic

• theorem: if X1, . . . ,Xn are iid Bernoulli random variables with parameter θ, then
T (X ) = X1 + . . .+ Xn is a sufficient statistic for θ

• proof: given that T (X ) ∼ Bin(n, θ), the ratio of pdfs is, defining t =
∑n

i=1 xi

p(x |θ)
q
(
T (x)|θ

) =

∏n
i=1 θ

xi (1 − θ)1−xi(
n
t

)
θt(1 − θ)n−t

=
θ
∑n

i=1 xi (1 − θ)
∑n

i=1(1−xi )(
n
t

)
θt(1 − θ)n−t

=
θt(1 − θ)n−t(
n
t

)
θt(1 − θ)n−t

=
1(
n
t

)
which does not depend on θ ■
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normal sufficient statistic

• theorem: if X1, . . . ,Xn are iid N(µ, 1) random variables, then T (X ) = X̄n is a sufficient statistic
for µ

• proof: given that T (X ) ∼ N(µ, 1/n), the ratio of pdfs is

f (x |µ)
q(x̄n|µ)

=

∏n
i=1(2π)

−1/2 exp
(
−(xi − µ)2/2

)
(2π/n)−1/2 exp

(
− n

2 (x̄n − µ)2
)

...

=
(2π)−n/2 exp

(
− 1

2

[∑n
i=1(xi − x̄n)

2 + n(x̄n − µ)2
])

(2π/n)−1/2 exp
(
− n

2 (x̄n − µ)2
)

= n−1/2(2π)−(n−1)/2 exp

(
−1

2

n∑
i=1

(xi − x̄n)
2

)
,

which does not depend on µ ■
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how to find a sufficient statistic
• it may not be the best approach to use the definition directly, since one has to guess the sufficient

statistic, find the pmfs, and calculate the ratio.

• fortunately, there is the following theorem

• factorization theorem (CB 6.2.6): let fX (x |θ) denote the joint pmf/pdf of a sample X , then T (X )
is a sufficient statistic for θ if and only if there exist functions g(t|θ) and h(x) such that, for all
sample points x and all parameter points θ,

fX (x |θ) = g
(
T (x)|θ

)
h(x)

• proof (⇒, discrete case): note that, because T (X ) is a sufficient statistic,
h(X ) = P

(
X = x |T (X ) = T (x)

)
does not depend on θ. Letting then g

(
t|θ
)
= Pθ

(
T (X ) = t

)
yields

f (x |θ) = Pθ(X = x)

= Pθ

(
X = x ,T (X ) = T (x)

)
= Pθ

(
T (X ) = T (x)

)
P
(
X = x |T (X ) = T (x)

)
= g

(
T (x)|θ

)
h(x)

■
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how to find a sufficient statistic

• proof (⇐, discrete case): assume that factorization

fX (x |θ) = g
(
T (x)|θ

)
h(x)

exists and examine the ratio fX (x|θ)
q(T (x)|θ) , where q(t|θ) is the pmf of T (X ).

fX (x |θ)
q(T (x)|θ) =

g(T (x)|θ)h(x)
q(T (x)|θ) =

g(T (x)|θ)h(x)∑
AT (x)

g(T (y)|θ)h(y)

where AT (x) = {y : T (y) = T (x)}. Then

fX (x |θ)
q(T (x)|θ) =

g(T (x)|θ)h(x)
g(T (x)|θ)

∑
AT (x)

h(y)
=

h(x)∑
AT (x)

h(y)

The ratio does not depend on θ, so T (X ) is a sufficient statistic. ■
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how to find a sufficient statistic

• to use the factorization theorem, we factor the joint pdf of the sample into two parts:

− h(x): one does not depend on θ

− g(T (x)|θ): depends on the sample x only through T (x)

• let’s see some examples...
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discrete uniform sufficient statistic

• theorem: if X1, . . . ,Xn are iid uniform on 1, . . . , θ then T (X ) = X(n) is a sufficient statistic for θ

• proof: the joint pmf of X is

f (x |θ) =

{ 1
θn

if xi = 1, . . . , θ for i = 1, . . . , n
0 otherwise

write the restriction

{xi = 1, . . . , θ for i = 1, . . . , n} = I(xi ∈ N) · I(x(n) ≤ θ)

so

f (x |θ) =
1
θn

I(x(n) ≤ θ)︸ ︷︷ ︸
g(x(n)|θ)

·
n∏

i=1

I(xi ∈ N)︸ ︷︷ ︸
h(x)
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normal distribution, both parameters unknown
• theorem: let X1, . . . ,Xn be iid N(µ, σ2). Then

T1(x) = x̄

T2(x) = s2 =
1

n − 1

n∑
i=1

(xi − x̄)2

are sufficient statistics.

• proof: the joint pdf of the sample X is

f (x |µ, σ2) =
n∏

i=1

(2πσ2)−1/2 exp
{
−(xi − µ)2/(2σ2)

}
= (2πσ2)−n/2 exp

{
−

n∑
i=1

(xi − µ)2/(2σ2)

}

= (2πσ2)−n/2 exp

{
−

(
n∑

i=1

(xi − x̄)2 + n(x̄ − µ)2
)
/(2σ2)

}
= (2πσ2)−n/2 exp

{
−
(
(n − 1)t2 + n(t1 − µ)2

)
/(2σ2)

}
then select g(T (x)|θ) as this expression and h(x) = 1. ■
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exponential family

• theorem: if X1, . . . ,Xn are iid observations from an exponential family then

T (X ) =

(
n∑

j=1

s1(Xj), . . . ,
n∑

j=1

sd(Xj)

)

is sufficient for θ

• proof: the joint pdf is

n∏
i=1

{
h(xi )c(θ) exp

(
k∑

j=1

wj(θ)tj(xi )

)}
= c(θ)n exp

(
n∑

i=1

k∑
j=1

wj(θ)tj(xi )

)
·

n∏
i=1

h(xi )

= c(θ)n exp

(
k∑

j=1

wj(θ)
n∑

i=1

tj(xi )

)
︸ ︷︷ ︸

≡g(T (x)|θ)

·
n∏

i=1

h(xi )︸ ︷︷ ︸
≡h(x)
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sufficient statistics

• not all sufficient statistic achieve a substantial data reduction

• example: if X1, . . . ,Xn are i.i.d. from a pdf fX , the order statistic

T (X ) = (X(1), . . . ,X(n))

is a sufficient statistic for fX

• example: the complete sample is a sufficient statistic, since

fX (x |θ) = f (T (x)|θ)h(x)

with h(x) = 1

• sometimes it is impossible to achieve a substantial data reduction: nonparametric statistics

• it turns out that having a data reduction is a particular property of only a few distributions:
outside the exponential family, it is rare to have a sufficient statistic smaller than the sample size
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minimal sufficient statistics

• as we have seen, there are often numerous sufficient statistics. which one is better?

• a criterion: achieving more data reduction is better

• a minimial sufficient statistic is a statistic that has achieved the maximal amount of data
reduction while still retaining all the information about the parameter θ
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minimal sufficient statistics

• theorem: any bijective function of a sufficient statistic is also a sufficient statistic.

• proof: to see this, let T (X ) be a sufficient statistic and T ∗(X ) ≡ r(T (X )). Then

fX (X |θ) = g(T (X )|θ)h(x) = g(r−1(T ∗(X ))|θ)h(x)

and defining g∗(t|θ) = g(r−1(t)|θ),

f (x |θ) = g∗(T ∗(x)|θ)h(x)

so T ∗(x) is a sufficient statistic ■
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minimal sufficient statistics

• definition: a sufficient statistic T (X ) is called a minimal sufficient statistic if, for any other
sufficient statistic T ′(X ), T (X ) is a function of T ′(X ).

• we defined a sufficient statistic as a partition of the sample space X :

− let T = {t : t = T (x), x ∈ X}, the image of X under T (x)

− T (x) induces a partition of X , {At : t ∈ T }, At = {x : T (x) = t}

• ... and back to the minimal sufficient statistics:

− if T (x) is a function of T ′(x), then T ′(x) = T ′(y) =⇒ T (x) = T (y)

− let Bt′ = {x |T ′(x) = t′}. So Bt′ ⊆ At for some t

− this must be true for any sufficient statistic T ′(x)

− in other words, the minimal sufficient statistic induces the coarsest partition {At |t ∈ T } of X among
all sufficient statistics
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minimal sufficient statistics

• again, applying this definition may not be too practical. Fortunately, we have the following
theorem

• theorem (CB 6.2.13): let f (x |θ) be the pmf or pdf of a sample X . Suppose that there exists a
function T (x) such that, for every two sample points x and y , the ratio f (x|θ)

f (y|θ) is a constant
function of θ if and only if T (x) = T (y). Then T (X ) is a minimal sufficient statistic for θ.

• before proving the theorem, let’s see an example
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minimal sufficient statistics

• example: let X1, . . . ,Xn be i.i.d. N(µ, σ2), both µ and σ2 unknown. The ratio of densities are

f (x |µ, σ2)

f (y |µ, σ2)
=

(2πσ2)−n/2 exp
{
−[n(x̄ − µ)2 + (n − 1)s2

x ]/(2σ2)
}

(2πσ2)−n/2 exp {−[n(ȳ − µ)2 + (n − 1)s2
y ]/(2σ2)}

= exp

{
−n(x̄2 − ȳ2) + 2nµ(x̄ − ȳ)− (n − 1)(s2

x − s2
y )

2σ2

}
which will be a constant function of µ and σ2 if, and only if, x̄ = ȳ and s2

x = s2
y . Thus, (X̄ , S2) is

a minimal sufficient statistic for (µ, σ2).
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minimal sufficient statistics

• proof (T (X ) is a sufficient statistic): let T = {t : t = T (x) for some x ∈ X} be the image of X
under T (X ), along with its partitions At = {x : T (x) = t}. For each At , fix one element xt ∈ At .
So for any x ∈ X , there is a xT (x) ∈ At . That is, both x and xT (x) ∈ At . Therefore
T (x) = T (xT (x)) and f (x|θ)

f (xT (x)|θ)
is constant in θ.

Now take g(t|θ) = f (xt |θ) defined on T , and h(x) = f (x|θ)
f (xT (x)|θ)

defined on X . And write

f (x |θ) = g(T (x)|θ)h(x)

By the factorization theorem, T (X ) is a sufficient statistic. ■
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minimal sufficient statistics

• proof (T (X ) is a minimal sufficient statistic): let T ′(X ) be any other sufficient statistic. By the
factorization theorem, there exists functions g ′ and h′ such that f (x |θ) = g ′(T ′(x)|θ)h′(x). Let x
and y be any two sample points with T ′(x) = T ′(y). Then

f (x |θ)
f (y |θ) =

g ′(T ′(x)|θ)h′(x)

g ′(T ′(y)|θ)h′(y)
=

h′(x)

h′(y)

since the ratio does not depend on θ, by assumption T (x) = T (y). Thus, T (x) is a function of
T ′(x) and T (x) is minimal. ■
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minimal sufficient statistics

• example: let {X1, . . . ,Xn} be a random sample. Find the minimal sufficient statistics for θ with
distribution.

f (x |θ) = e−(x−θ), θ < x < ∞, −∞ < θ < ∞

• answer:

f (x |θ)
f (y |θ) =

∏n
i=1

(
e−(xi−θ) · I(θ < xi < ∞)

)
∏n

i=1 (e
−(yi−θ) · I(θ < yi < ∞))

=
enθe−

∑
i xi
∏n

i=1 I(θ < xi < ∞)

enθe−
∑

i yi
∏n

i=1 I(θ < yi < ∞)

=
e−

∑
i xiI(θ < min xi < ∞)

e−
∑

i yiI(θ < min yi < ∞)

which is independent of θ if, and only if, T (X ) = min{X1, . . . ,Xn}.
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likelihood function

• definition: let fX (x |θ) denote the joint pdf/pmf of X , then the likelihood function of θ given
X = x is

ℓ(θ|x) = fX (x |θ)

• discrete case: if we compare the likelihood functions at θ1 and θ2 and find that

Pθ1(X = x) = ℓ(θ1|x) > ℓ(θ2|x) = Pθ2(X = x),

then the sample we observe is more likely to stem from θ = θ1 than from θ = θ2.

• in other words, θ1 is more plausible that θ2 given X = x

• continuous case: remains a basis for comparison

Pθ1(|X − x | < ϵ)

Pθ2(|X − x | < ϵ)
∼=

ℓ(θ1|x)
ℓ(θ2|x)

for small ϵ > 0
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likelihood function

• example: let X have a binomial distribution. The p.d.f. is a function of x , given p,

fX (x |p = 0.3) =

(
10
x

)
(0.3)x(0.7)10−x

and the likelihood is a function of p given x

ℓ(p|x = 3) =

(
10
3

)
p3(1 − p)10−3
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likelihood function
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likelihood function
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principle

• likelihood principle: if x and y are two sample points such that ℓ(θ|x) is proportional to ℓ(θ|y),
that is to say, there exists a constant c(x , y) such that ℓ(θ|x) = c(x , y) ℓ(θ|y) for all θ, then they
entail the same information about θ

• that is, even if two sample points x and y have only proportional likelihoods, then they contain
equivalent information about θ (this is true as long as c(x , y) does not depend on θ)

• we are careful enough to say that θ1 is more plausible that θ2 rather than more probable, not only
because ℓ(θ|x) is typically not a pdf, but also because θ is usually fixed
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Reference:

• Casella and Berger, Ch. 6

Exercises:

• 6.1–6.6, 6.8, 6.9, 6.16, 6.17.

30 / 30


	data reduction
	sufficiency principle
	likelihood principle
	exercises

